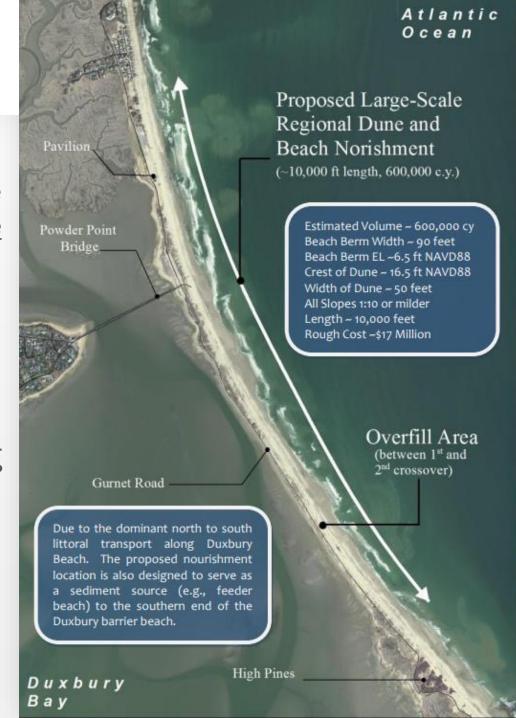


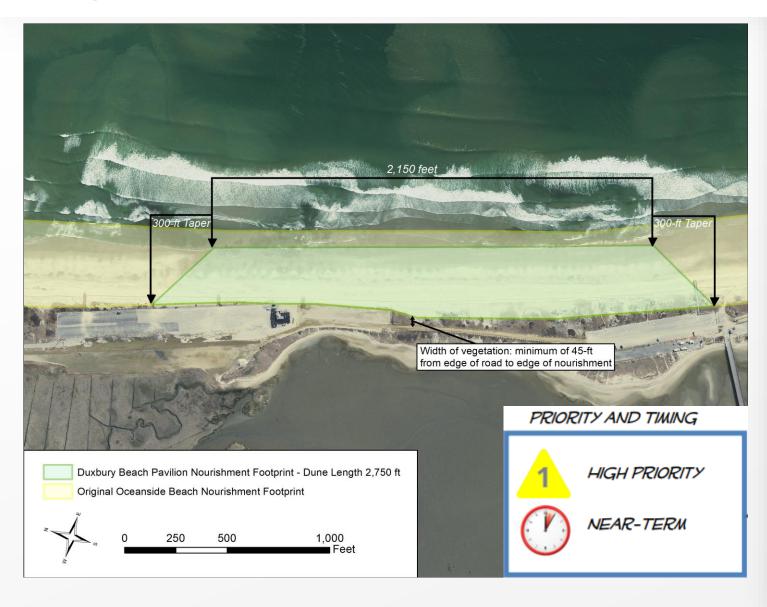
Duxbury Beach Reservation

2022-2023 CZM Resiliency Grant Beach & Dune Nourishment



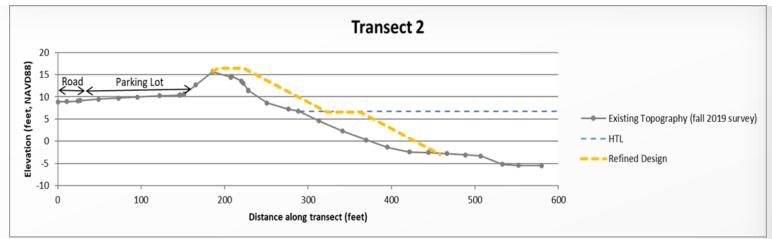
DBR Commitment to Resilience

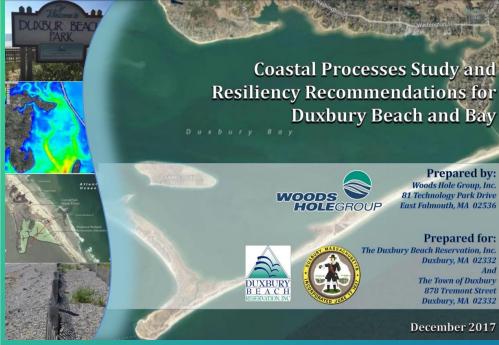
Regional Adaptation Strategy


- Duxbury Beach is <u>sediment starved</u> why?
- Improving the resilience of the beach and dune system involves <u>adding nourishment to increase the</u> <u>sediment supply</u> → no place that doesn't need sand!
- Permitting a large footprint allows DBR to
 - 1. Construct future nourishment projects to offset deficit
 - 2. Adaptively manage impacts as they occur
- Current project is strategically focused on improving the resilience of narrowest, most vulnerable section of the existing beach and dune.

Regional adaptation recognized as a <u>high priority;</u>
<u>long-term goal</u> outlined in 2017 Coastal Processes and
Resiliency Study.

2022 – 2023 Duxbury Beach Park Nourishment Project


Strategic Action


- Subset of larger, regional adaptation
- Focus on narrowest section of beach
- Primary impacts include Wave
 Attack & Erosion, Prolonged
 Inundation, & Sediment Transport
- Design based on review of existing conditions along this section of the beach – intended to: Improve resilience of communities located landward of barrier, provide habitat, support recreation.
- Ranked the highest priority project outlined in the 2017
 Coastal Processes and Resiliency Study

2022 – 2023 Duxbury Beach Park Nourishment Project

A new approach...

- Includes both beach and dune nourishment a first for DBR.
 - 74,475 cubic yards \rightarrow 104,265 tons \rightarrow lots of trucks!
- Necessary to compensate for sediment starved conditions.
- Sediment placed below the high tide line will quickly leave the project footprint but will not be lost from the system.
- Re-distributed sediment is working!
 - Builds offshore bars, attenuates wave energy, migrates back to shore and acts as a sediment source for downdrift (southern) sections of the beach.

The current project is an important step in implementing the vision outlined in the 2017 study. The study outlines a comprehensive strategy that can be implemented sequentially to improve the resilitnce of Duxbury Beach.

WOODS HOLE

So how about that sand?

Sourcing materials

- Where does nourishment material come from?
 - Upland sources (used on current project)
 - Dredged sources (not used on this project)
- Sediment Evaluation
 - Source material analyzed to ensure grain sizes match existing conditions
 - In this case, coarse sand, with some cobble mixed in – representative of the mix of grain sizes found on Duxbury Beach.
- Coarse sand and cobble are more stable and less erosive than fine-grained sand
 - Goal is to maintain the landform!

Samples are available for viewing

So how about that sand?

Gauging expectations

Sediment Transport

 Sand placed below the high tide line will move outside the project area and down the beach.

Iron Staining

- Sand on the beach has been washed, bleached, and tumbled – producing a white coloration
- Sand from upland sources is coated in finegrained sediment rich in iron. At first, it has an orange appearance. Over time, it will become washed, bleached, and tumbled.

Sediment Plumes

 The fine-grained sediment coating the sand grains gets suspended in the near-shore when the nourishment sand gets wet – it may appear as a cloudy plume until the sediment is washed.

Key Takeaways & Expected Outcomes

Implementing the vision of the 2017 Coastal Processes and Resilience Study:

- One of the primary causes of coastal erosion is a deficit of sediment within the coastal littoral cell.
 - To offset this deficit, nourishing the beach with compatible sediment placement is a logical means for improving the resiliency of a shoreline.
- A large-scale beach nourishment project is the recommended regional adaptation.
- The Duxbury Beach Reservation ranked this location as the highest priority site to receive nourishment.

- Beach nourishment doesn't stop erosion, but it does strengthen and improve the resilience of the system.
- Damage to landward areas is reduced by extending the shoreline seaward.
- Although nourished sand is eventually displaced alongshore or transported offshore, the nourished sand that is eroded fills areas that would normally have been lost or eroded during a storm event.

For coastlines with a dwindling sediment supply and faced with rising seas, this is critical for long-term success!

